
Federated Learning for Adaptive Road Efficiency
(FLARE)

Tyler Trott - V01040680
CSC 466 - Overlay and Peer-to-Peer Networking

Instructor: Jianping Pan
April 11, 2025

Abstract

As cities grow and urban transportation systems become increasingly complex, managing traffic
efficiently has become a significant challenge—particularly in environments with constrained
computing and communication capabilities, such as Wireless Sensor Networks (WSNs). This
project introduces Federated Learning for Adaptive Road Efficiency (FLARE), a framework
designed to optimize traffic flow predictions using a decentralized mesh of traffic sensor nodes.
By leveraging federated learning with gossip-based protocols, nodes can collaboratively
improve local models without relying on a central server, reducing communication overhead and
enhancing scalability. Each node in the system is trained on localized traffic data, gathered from
real intersections in downtown Victoria, BC, and then shares model updates with its immediate
neighbors using a fully connected cluster-based topology called QuadMesh.

The simulation integrates OMNeT++ for network modeling and SUMO for realistic traffic
generation, with Python scripts handling data preprocessing and linear regression model
training. Results show promising performance in early simulation rounds, with model
convergence occurring through iterative neighborhood updates. The system demonstrates
potential for scalable, distributed traffic control and lays the groundwork for future
enhancements such as anomaly detection and real-time adaptation. This project highlights the
viability of combining federated learning and gossip communication as a foundation for
next-generation smart city traffic solutions.

1. Introduction

Efficient traffic management is a critical aspect of urban infrastructure, especially as cities grow
and transportation networks become more congested. Traditional centralized traffic control
systems often struggle with scalability, latency, and single points of failure. As a result, there is
growing interest in decentralized, intelligent systems that can respond to traffic conditions in real
time.

Wireless Sensor Networks (WSNs) offer a promising foundation for distributed traffic monitoring
and control, but they come with significant limitations. Nodes in WSNs typically have
constrained processing power, limited storage, and restricted communication bandwidth. These
limitations make it challenging to apply traditional machine learning techniques, which often
require centralized data aggregation and substantial computational resources.

The objective of this project is to design and simulate a distributed traffic optimization framework
that works within the constraints of WSNs. The proposed system, GossipGrid, combines
federated learning with gossip-based communication protocols to enable nodes to
collaboratively learn traffic patterns while keeping raw data local. This approach reduces
communication overhead and enhances scalability and fault tolerance.

The system uses real traffic data from intersections in Victoria, BC, and is simulated using a
combination of SUMO for realistic traffic flow and OMNeT++ for network behavior. A
cluster-based topology called QuadMesh enables fully connected local learning and inter-cluster
communication. The project demonstrates how decentralized learning strategies can be applied
in low-resource environments to support smart city applications like dynamic traffic control.

2. Background and Related Work

The development of intelligent transportation and decentralized learning systems brings
together a number of research areas, including wireless sensor networks (WSNs), federated
learning (FL), and gossip-based protocols. This section reviews the foundational work in each of
these areas and discusses how they interrelate for applications such as traffic prediction and
control.

2.1 Wireless Sensor Networks for Traffic Management

Wireless sensor networks serve as the physical backbone of many smart transportation systems
by collecting real-time environmental and traffic data. WSNs are typically composed of a large
number of low-power nodes with limited computation and communication capabilities (Akyildiz,
Su, Sankarasubramaniam, & Cayirci, 2002). Their constrained nature has prompted research
into lightweight data processing and communication protocols that are essential for deploying
distributed intelligence in traffic management. Researchers have shown that by optimizing data
collection and processing in WSNs, it is possible to reduce energy consumption and improve
the accuracy of traffic flow predictions (Lv, Duan, Kang, Li, & Wang, 2015).

2.2. Federated Learning in Distributed Systems

Federated learning has emerged as an effective approach for training machine learning models
on distributed data without the need to centralize raw data (McMahan, Moore, Ramage,
Hampson, & y Arcas, 2017). In FL, individual nodes (or sensors) update local models which are
then aggregated to form a global model. This paradigm is particularly relevant for applications in
WSNs and intelligent transportation, where preserving data privacy and reducing

communication overhead are critical. By enabling local training on traffic data, FL allows for
adaptive and region-specific traffic predictions while safeguarding sensitive information
(Konečný, McMahan, Yu, Richtárik, Suresh, & Bacon, 2016).

2.3. Gossip Protocols for Decentralized Aggregation

Gossip-based protocols provide a decentralized alternative to the classical client–server model
in federated learning. In gossip learning, nodes periodically exchange model updates with
randomly selected neighbors, which not only distributes the communication load but also
improves network robustness by eliminating a single point of failure (Kempe, Dobra, & Gehrke,
2003). The random peer-to-peer exchange mechanism has been demonstrated to be effective
at achieving consensus on model parameters across the network, even in highly dynamic
environments typical of vehicular networks. Recent studies suggest that gossip learning can
match or even outperform centralized federated approaches under uniform data distribution
conditions (Hegedűs, Danner, & Jelasity, 2013).

2.4. Traffic Prediction and Control Using Distributed Learning

The integration of FL and gossip-based protocols is particularly attractive for traffic management
applications. Traffic prediction models benefit from the localized learning capabilities of FL, as
they can capture regional variations in traffic patterns more accurately. When coupled with the
robust and scalable communication provided by gossip protocols, the system can dynamically
adjust traffic control measures in response to real-time events (Lv et al., 2015; McMahan et al.,
2017). Several studies have explored these ideas, underscoring the importance of leveraging
decentralized learning paradigms to improve both predictive accuracy and operational efficiency
in intelligent transportation systems.

3. Scalability and Real-World Traffic Data

In developing FLARE, an integral goal was to ensure that the system can scale effectively to
cope with complex, large-scale traffic networks while remaining robust in real-world
deployments. This section outlines the methods used to achieve scalability and describes how
real-world traffic data are integrated into the simulation environment to validate the system’s
performance.

3.1. Scalability in FLARE

FLARE leverages a decentralized federated learning architecture to manage traffic signal
control without the need for a centralized aggregation server. By distributing both data
processing and model training across numerous edge nodes (e.g., traffic sensors or roadside
units), the system minimizes communication overhead and reduces latency. The use of
lightweight Python scripts for data preprocessing and model training further ensures that each
node can operate efficiently even on constrained hardware.

Key scalability features include, decentralized model aggregation where Nodes use
peer-to-peer model updates via the federated averaging (FedAvg) algorithm. This approach
improves fault tolerance and eliminates the single-point-of-failure risk inherent in centralized
systems (McMahan et al., 2017). Efficient data flow optimization which includes optimization of
Python scripts has ensured seamless CSV file reading and preprocessing, enabling quick
integration with traffic model updates. This optimization is critical when scaling up to networks
with hundreds or thousands of nodes. Along with dynamic clustering for load balancing. FLARE
can dynamically group nodes based on geographical proximity or data similarity. Such clustering
not only balances computation and communication but also reduces the time required for model
convergence—further demonstrating the system’s scalability in large urban environments.

3.2. Integration of Real-World Traffic Data

To ensure that FLARE’s performance remains robust under real-world conditions, real traffic
data from metropolitan areas are used to simulate traffic patterns accurately. In our project, we
integrate data from SUMO (Simulation of Urban Mobility), which provides detailed, micro-level
traffic simulations based on actual road networks and vehicle trajectories.

Key aspects of integrating real-world data into our simulation rely on a comprehensive
data-driven approach. By incorporating both historical and real-time traffic information—such as
vehicle counts, flow rates, and signal timings—FLARE adapts dynamically to varying traffic
conditions, thereby ensuring that the control logic is continually refined on the basis of accurate,
real-world inputs.

To validate the approach, our traffic models are rigorously benchmarked against actual datasets,
for example, those collected in Victoria, BC, or similar smart city initiatives. This benchmarking
process demonstrates that our distributed learning framework effectively captures the nuances
of traffic congestion and signal adjustments, leading to tangible improvements in delay reduction
and throughput optimization.

Additionally, the system undergoes iterative performance evaluation: the simulation runs across
multiple rounds during which individual nodes continuously update their models with new traffic
measurements. Throughout these iterations, key performance metrics—such as convergence
speed, prediction accuracy of traffic flow, and enhancements in signal timing—are monitored to
evaluate FLARE’s overall effectiveness and reliability in a live urban environment.

The combined approach of advanced scalability and real-world data integration ensures that
FLARE not only performs efficiently in controlled simulation environments but also proves its
viability for real-time adaptive traffic management in increasingly complex urban settings.

4. Optimizing Traffic Control Logic

In FLARE, the fundamental goal of improving traffic management is realized by refining the
control logic at intersections. This control logic is rooted in a decentralized federated learning
(FL) model where traffic sensor nodes continuously train local predictive models and exchange

updates through a peer-to-peer (P2P) protocol. The OMNeT++ simulation framework plays a
central role in emulating this distributed environment. Each node in the simulation, implemented
as an instance of a C++ module (GossipNode), not only performs local model training but also
communicates with its neighbors by broadcasting model updates.

Fig 1

4.1 Network Topology

Figure 1 illustrates the core architecture of our simulation, which is divided into four distinct
clusters—labeled A, B, C, and D. Each cluster represents a fully connected mini-network (a
complete graph) of four nodes. Within each cluster, every node is directly connected to the three

other nodes; for example, in Cluster A, node a-A directly communicates with nodes b-A, c-A,
and d-A.

Between clusters, connectivity is limited to the gateway nodes – denoted as “a-nodes.” These
nodes form a loop or square topology linking the clusters. For instance, the gateway in Cluster A
(node a-A) connects to the gateway in Cluster B (node a-B) and Cluster D (node a-D), forming a
ring that ensures inter-cluster communication.

This topology offers significant benefits in a gossip-based federated learning (FL) setting. Unlike
centralized aggregation, gossip-based FL enables decentralized model sharing and iterative
peer-to-peer updates; nodes exchange model updates with both their local cluster partners and
the gateway nodes, creating multiple pathways for information propagation. This design
supports multi-hop communication, meaning that if one direct path is congested or unavailable,
nodes can still exchange model information via alternative routes. The system can potentially
evolve to include multi-role nodes, where any node can serve as an aggregation point, using
dynamic gossip weights (α-values) that adjust based on observed traffic volume and
connectivity redundancy. h intersection’s node connects directly to the 3 others in its group).

At simulation startup, nodes are instantiated according to specifications in the network
description (.ned) file. The .ned file statically deploys 16 nodes arranged into four clusters (or
circles) with predefined connections. Each node’s behavior is encapsulated in the GossipNode
module, which is defined in C++ (see the provided .cc file). Upon initialization, each node reads
its configuration from a CSV file, thereby being assigned a specific location and a cluster of
related nodes. This information is then used to update the graphical display of the node within
the simulator. Moreover, the nodes initialize a set of model weights randomly and schedule a
periodic training event, where the duration between events is chosen randomly to mimic
realistic, asynchronous behavior.

The simulation implementation includes an embedded Python interpreter, which enables a
cross-language integration between C++ and Python. This integration supports advanced model
evaluation tasks, such as running a linear regression script that determines the accuracy of the
current model weights. The following pseudocode summarizes the operational sequence of an
individual node, capturing the essential procedures for initialization, local training, and
communication:

Procedure NodeInitialize
 Begin
 // Initialize simulation and schedule first training event
 If node index equals 0 then
 Schedule gossip message at time 0.0
 Initialize Python interpreter and set up module search path
 End if
 // Initialize local training event with a random delay
 Schedule training event (TrainEvent) at simTime + random value

 // Initialize model weights with random values (e.g., between 0.5

and 1.5)
 Read CSV file to assign location and cluster membership based on

node index
 Update node display string with location and cluster details
 End

Procedure HandleMessage(message)
 Begin
 If message is TrainEvent then
 Invoke PerformLocalTraining
 Reschedule TrainEvent with a new random delay
 Else if message is ModelUpdate then
 Extract received weights
 Merge received weights with local weights by averaging
 End if
 Delete the processed message
 End

Procedure PerformLocalTraining
 Begin
 // Simulate local training by perturbing each model weight slightly
 For each weight in modelWeights:
 Update weight by adding a small random value within a defined

range
 End for
 Compute maximum change in weights to assess convergence; log

convergence if threshold met
 Evaluate model accuracy using a Python script via embedded

interpreter
 Create a ModelUpdate message and populate it with the updated

weight vector
 Record the simulation time before sending the message
 Broadcast the ModelUpdate message to all connected output gates
 Log the message transmission and estimate latency for diagnostics
 End

The actual code in the GossipNode module implements these procedures. In the
initialize() function, for instance, the node calls assignLocationAndCluster(), which
opens the CSV file and assigns relevant properties based on the node’s index. The
handleMessage() function distinguishes between training events and incoming ModelUpdate
messages; when a ModelUpdate is received, the current model weights are averaged with the

received values, contributing to a distributed learning process analogous to federated averaging
(FedAvg) as described by McMahan et al. (2017).

The .ned file defines the network topology for the simulation. Nodes are interconnected
according to a mesh-like pattern with delays assigned via a custom channel (set to 100 ms in
the simulation) and are organized into distinct groups. Such a topology ensures that model
updates propagate among nodes in a manner that closely mirrors real-world wireless sensor
networks. Notably, the inter-cluster links (or “gateway” connections) facilitate exchange between
groups, which is critical for synchronizing the distributed learning process across diverse
geographic areas.

The code snippet below (extracted from the .cc file) illustrates the core functionality of local
training and broadcasting within a node:

void GossipNode::performLocalTraining() {
 EV << "Node[" << getIndex() << "] performing local training\n";

 // Save previous weights for convergence checking
 std::vector<double> previousWeights = modelWeights;
 for (auto& weight : modelWeights) {
 weight += uniform(-0.1, 0.1);
 }

 double maxWeightChange = 0.0;
 for (size_t i = 0; i < modelWeights.size(); i++) {
 double weightChange = fabs(modelWeights[i] - previousWeights[i]);
 maxWeightChange = std::max(maxWeightChange, weightChange);
 }

 if (maxWeightChange < 0.01) {
 EV << "Node[" << getIndex() << "] model has converged! Max weight

change: " << maxWeightChange << "\n";
 }

 // Evaluate accuracy via Python integration
 double accuracy = evaluateModel(modelWeights);
 EV << "Node[" << getIndex() << "] accuracy: " << accuracy << "\n";

 // Create and broadcast model update
 ModelUpdate *update = new ModelUpdate("ModelUpdate");
 update->setSenderId(getIndex());
 update->setWeightsArraySize(modelWeights.size());
 for (size_t i = 0; i < modelWeights.size(); ++i) {

 update->setWeights(i, modelWeights[i]);
 }
 forwardModelUpdate(update);
}

In summary, the fusion of OMNeT++ for network simulation and embedded Python for model
evaluation forms the backbone of FLARE’s approach to optimizing traffic control logic. The
nodes are created via the OMNeT++ network description, and each node autonomously
performs local training and communicates model updates. These interactions, captured through
the provided pseudocode and code excerpts, illustrate the operational flow that underpins
FLARE’s distributed and adaptive control strategy. This methodology not only ensures that the
system scales to large, real-world traffic networks but also lays a solid foundation for the
continuous refinement of traffic control at intersections.

5. Description of Simulation Setup

The simulation involves a wireless sensor network (WSN) where multiple nodes are located at
various intersection points in a city. Each node represents a traffic monitoring unit, and the
network is used to simulate the communication between nodes based on the federated learning
protocol using gossip messages. The simulation is executed on a mesh network topology,
where nodes communicate locally and share their model updates with each other.

Nodes are initialized with different model weights, corresponding to their local traffic data. A
custom gossip-based protocol is used to propagate model updates between nodes. Each node
performs local training, and its accuracy is reported during each round. The simulation includes
model update messages, training events, and the exchange of models to simulate the federated
learning process. The goal is to evaluate the performance of this protocol over multiple
communication rounds.

Metrics Used:

● Accuracy: The percentage of correct predictions made by the node's local model.

● Precision, Recall, F1: These metrics are used to evaluate the classification
performance of each model at every round.

● Message Latency: The time taken for a message (e.g., model update, training event) to
be transmitted between nodes in the network.

Results (performance over rounds):

1. Accuracy Evolution:

○ Node accuracy fluctuates across the simulation rounds as each node trains on
local data and receives updates from other nodes. For example, Node[5] started
with an accuracy of 30.33%, Node[8] at 43.47%, Node[3] at 48.17%, and Node[2]
at 38.96%. Over time, the nodes update their models, and the accuracy
improves, reflecting the effectiveness of federated learning in aggregating local
models.

2. Model Convergence:

○ Model convergence can be observed in the way accuracy and other metrics
evolve with time. The nodes gradually adjust their models as they exchange
updates. For example, Node[10] showed an accuracy of 43.86% at time t=1.529,
which slightly improved as it received updates from other nodes.

3. Communication Costs:

○ The communication costs can be assessed through the time taken for model
updates to propagate through the network. Messages were exchanged frequently
between nodes. For example, Node[4] received models from Node[5], Node[8]
received models from Node[10], and so on.

Interpretation of Results:

The results show that nodes, despite having initial local models with varying accuracies,
progressively improve their models through federated learning and gossip protocols. As nodes
exchange models, they achieve better consensus on the overall traffic pattern, which is reflected
in the accuracy improvements. The federated learning mechanism allows the nodes to learn
collaboratively while keeping their data private.

Additionally, communication overhead (message latency) seems to be a key factor in the
synchronization of the model across nodes. As the simulation progresses, the propagation of
updates between nodes becomes more frequent, leading to potential synchronization and
latency issues.

Observations on Synchronization and Latency Issues:

● Synchronization Issues: The synchronization between nodes can be challenging when
there is a delay in receiving model updates. For instance, at certain points in the
simulation, Node[0] received updates from Node[1] after a delay, which indicates that
some nodes were not fully synchronized in terms of training.

● Latency Issues: Latency is observed as a factor impacting the speed of model updates.
For example, message delays were observed between nodes such as Node[0] and
Node[10], affecting the timely sharing of model information. This delay could hinder the
speed of model convergence and performance improvement.

6. Challenges and Limitations

The development of FLARE, while demonstrating an innovative decentralized approach to traffic
control, has surfaced several challenges that underscore the complexity of deploying federated
learning in dynamic vehicular environments. One of the central challenges lies in the inherent
tension between achieving rapid model convergence and managing communication overhead
across distributed nodes. In our current simulation framework, nodes exchange model
parameters through a simple averaging mechanism, which, although effective in theory, can
suffer from delays and potential inconsistencies when extended to larger, real-world networks.
The assumption of uniform communication delays and ideal network conditions does not always
hold in practice, and latency variations may lead to asynchronous updates that undermine the
stability of the global model.

Another significant limitation arises from the integration of heterogeneous computing
environments within the simulation. FLARE relies on a combination of C++ modules
implemented in OMNeT++ and embedded Python scripts for model evaluation, a
cross-language approach that introduces complexity and potential performance bottlenecks.
The overhead associated with initializing and interfacing between the C++ simulation
environment and the Python interpreter may obscure the genuine behavior of local model
training, thereby affecting the accuracy of convergence assessments. This challenge is
compounded by the preliminary nature of our local training routine, which uses a rudimentary
weight perturbation strategy rather than more advanced learning algorithms that could better
capture traffic dynamics.

The use of static CSV files for node configuration, while sufficient for initial experiments,
imposes additional constraints on the scalability and adaptability of FLARE. In dynamic
real-world scenarios, the spatial and clustering information of nodes is likely to evolve with
changes in traffic patterns and sensor deployments. This static configuration model restricts the
system’s ability to reconfigure itself in real time, potentially leading to suboptimal performance
when confronted with shifting network conditions and heterogeneous traffic data.

Moreover, the simulation environment itself, despite its controlled setting, does not fully
encompass the variability and unpredictability encountered in real urban traffic systems. Factors
such as environmental influences, unpredictable driver behavior, and sporadic sensor failures
are difficult to model accurately in simulation. These limitations suggest that while FLARE
establishes a promising proof-of-concept, further research is essential to refine local training
schemes, develop more robust aggregation algorithms, and incorporate richer real-world data to
evaluate system performance under realistic conditions.

In summary, the challenges identified in this work—including communication latency, integration
complexity, static configuration, and the limitations of simulated data—highlight critical areas for
future investigation. Addressing these issues will be crucial in advancing FLARE from a
conceptual model to a fully functional and resilient traffic management system capable of
operating effectively in complex, real-world settings.

7. Future Work and Improvements

While FLARE establishes a novel framework that integrates federated learning with
decentralized control for urban traffic management, several avenues remain for further
exploration and refinement. One promising direction involves enhancing the sophistication of the
local training algorithms. The current model employs a relatively simple weight perturbation
strategy to simulate local learning; future research should incorporate state-of-the-art machine
learning techniques, such as more refined gradient descent variants or even specialized deep
learning architectures optimized for time series prediction. Integrating adaptive learning rates
and momentum-based updates could not only improve convergence speed but also help in
capturing the complex temporal variations seen in real traffic data. This focus on advanced local
training is expected to mitigate issues related to non-convergence and model drift, particularly in
a heterogeneous sensor network (McMahan et al., 2017; Konečný et al., 2016).

Another critical aspect lies in the development of more robust aggregation methods. At present,
FLARE relies on a simple averaging process to merge model updates from different nodes.
However, more complex aggregation techniques, such as weighted averaging that accounts for
node reliability or variance reduction methods, could significantly increase the robustness of the
global model. It is also worth investigating approaches that incorporate outlier detection during
aggregation, since sporadic communication failures or adversarial updates might skew the
collective learning process. Techniques from robust statistics or consensus algorithms could be
adapted to this decentralized setting (Kempe, Dobra, & Gehrke, 2003).

The dynamic nature of real-world urban traffic further motivates the need for adaptive network
reconfiguration. Currently, the node topology and cluster memberships are derived from a static
CSV configuration, which limits the system’s ability to respond to changes in sensor
deployments or evolving traffic patterns. Future work could focus on implementing dynamic
clustering mechanisms where nodes periodically update their cluster memberships based on
real-time traffic data and communication quality metrics. Incorporating such adaptive behavior
would allow FLARE to better maintain optimal connectivity and to respond more effectively to
events such as road closures or accidents.

Moreover, the integration of real-world traffic data remains an important challenge. While
simulation environments such as OMNeT++ and SUMO offer a controlled setting for model
development, experimental validation on data from actual traffic sensors would provide critical
insights into the performance and limitations of FLARE. Future research should aim to establish
partnerships with municipal traffic authorities or leverage publicly available datasets to test the
system under diverse and unpredictable traffic conditions. This real-world testing would help in
fine-tuning various parameters such as communication delay, model convergence thresholds,
and robustness to network congestion.

Finally, the current approach to privacy and security within FLARE, though promising, can be
further strengthened. Advances in differential privacy and secure aggregation protocols should
be explored to provide stronger privacy guarantees without incurring significant computational
overhead. In particular, research into lightweight encryption schemes suitable for

resource-constrained sensor nodes could be instrumental in protecting sensitive traffic data.
Similarly, investigating techniques that are resilient to adversarial attacks—especially in
scenarios where communication is intermittent—would help ensure that FLARE operates
securely even in challenging network environments.

While FLARE demonstrates the feasibility of applying federated learning to traffic management,
the future work outlined above highlights crucial areas for improvement. Enhancements in local
training sophistication, robust aggregation and dynamic clustering, integration of real-world data,
and fortified privacy measures are expected to propel FLARE toward practical, scalable, and
secure deployment in modern intelligent transportation systems.

8. Conclusion

In this paper, we introduced FLARE, a novel federated learning framework tailored to enhance
urban traffic control through decentralized processing. By leveraging a distributed architecture
based on wireless sensor networks and integrating peer-to-peer model updates within an
OMNeT++ simulation environment, FLARE demonstrates a promising approach to real-time
traffic optimization that preserves data privacy while mitigating communication bottlenecks.

The system design is characterized by its ability to autonomously initialize sensor nodes with
location and cluster-specific parameters drawn from a configuration file, perform local training
via lightweight Python-augmented routines, and exchange model updates using a simple yet
effective averaging strategy. This decentralized aggregation method, influenced by established
federated learning paradigms (McMahan et al., 2017; Konečný et al., 2016), affords FLARE the
dual benefits of scalability and robustness by eliminating single points of failure and reducing
the overall communication overhead.

Our investigation revealed several challenges, notably in achieving rapid convergence under
variable network conditions, managing the complexities inherent in a cross-language integration
between C++ and Python, and accommodating the static configurations derived from CSV files.
These limitations, however, serve as catalysts for future research that aims to refine local
training algorithms, develop more robust aggregation methods, and introduce dynamic network
reconfiguration strategies. Moreover, the preliminary experimental results highlight the critical
need for real-world data integration, as simulation environments, while useful, may not capture
the full complexity of urban traffic dynamics.

Looking forward, enhancing FLARE with more advanced learning techniques and stronger
privacy-preserving protocols will be essential in bridging the gap between simulation-based
studies and practical deployments. As intelligent transportation systems evolve and the demand
for decentralized, real-time control increases, FLARE offers a scalable foundation upon which
future improvements can be realized. Ultimately, this work contributes to a broader
understanding of how federated learning can be effectively applied in urban traffic management,
setting the stage for subsequent studies that will refine and extend these methodologies to meet
the rigorous demands of modern cities.

References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks:
A survey. Computer Networks, 38(4), 393–422.
https://www.sciencedirect.com/science/article/abs/pii/S1389128601003024

Hegedűs, I., Danner, G., & Jelasity, M. (2013). Gossip learning with linear models on fully
distributed data. Concurrency and Computation: Practice and Experience, 25(4), 556–571.
https://arxiv.org/abs/1109.1396

Kempe, D., Dobra, A., & Gehrke, J. (2003). Gossip-based computation of aggregate
information. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (pp. 482–491). IEEE.
https://www.cs.cornell.edu/johannes/papers/2003/focs2003-gossip.pdf

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016).
Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492. https://arxiv.org/abs/1610.05492

Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F.-Y. (2015). Traffic flow prediction with big data: A
deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2),
865–873. https://ieeexplore.ieee.org/document/6894591

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics (pp. 1273–1282).
PMLR. https://arxiv.org/abs/1602.05629

https://www.sciencedirect.com/science/article/abs/pii/S1389128601003024
https://arxiv.org/abs/1109.1396
https://www.cs.cornell.edu/johannes/papers/2003/focs2003-gossip.pdf
https://arxiv.org/abs/1610.05492
https://ieeexplore.ieee.org/document/6894591
https://arxiv.org/abs/1602.05629

	Federated Learning for Adaptive Road Efficiency (FLARE)
	Abstract
	1. Introduction
	2. Background and Related Work
	2.1 Wireless Sensor Networks for Traffic Management
	2.2. Federated Learning in Distributed Systems
	2.3. Gossip Protocols for Decentralized Aggregation
	2.4. Traffic Prediction and Control Using Distributed Learning

	3. Scalability and Real-World Traffic Data
	3.1. Scalability in FLARE
	3.2. Integration of Real-World Traffic Data

	4. Optimizing Traffic Control Logic
	4.1 Network Topology

	5. Description of Simulation Setup
	6. Challenges and Limitations
	7. Future Work and Improvements
	8. Conclusion

